Efficient parallel image clustering and search on a heterogeneous platform
نویسندگان
چکیده
We present a parallel image clustering and search framework for large scale datasets that does not require image annotation, segmentation or registration. This work addresses the image search problem while avoiding the need for user-specified or auto-generated metadata. Instead we rely on image data alone to avoid the ambiguity inherent in user-provided information. We propose a parallel algorithm exploiting heterogeneous hardware resources to generate global descriptors for the set of input images. Given a group of query images we derive the global descriptors in parallel. Secondly, we propose to build a customisable search tree of the image database by performing a hierarchical K-means (H-Kmeans) clustering of the corresponding descriptors. Lastly, we design a novel parallel vBFS algorithm to search through the H-Kmeans tree and locate the set of closest matches for query image descriptors. To validate our design we analyse the search performance and energy efficiency under a range of hardware clock frequencies and in comparison with alternative approaches. The result of our analysis shows that the framework greatly increases the search efficiency and thereby reduces the energy consumption per query.
منابع مشابه
مرور مؤثر نتایج جستجوی تصاویر با تلخیص بصری و متنوع از طریق خوشهبندی
With unprecedented growth in production of digital images and use of multimedia references, requirement of image and subject search has been increased. Systematic processing of this information is a basic prerequisite for effective analysis, organization and management of it. Likewise, large collections of images have been made available on the Web and many search engines have provided the poss...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملParallel computing using MPI and OpenMP on self-configured platform, UMZHPC.
Parallel computing is a topic of interest for a broad scientific community since it facilitates many time-consuming algorithms in different application domains.In this paper, we introduce a novel platform for parallel computing by using MPI and OpenMP programming languages based on set of networked PCs. UMZHPC is a free Linux-based parallel computing infrastructure that has been developed to cr...
متن کاملParallel heterogeneous CBIR system for efficient hyperspectral image retrieval using spectral mixture analysis
The purpose of content-based image retrieval (CBIR) is to retrieve, from real data stored in a database, information that is relevant to a query. In remote sensing applications, the wealth of spectral information provided by latest-generation (hyperspectral) instruments has quickly introduced the need for parallel CBIR systems able to effectively retrieve features of interest from ever-growing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014